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INTRODUCTION 
A. Background 

In recent years, drone technology has rapidly evolved and been integrated into various industries such 
as mapping, agriculture, surveillance, and even delivery. Drones, or unmanned aerial vehicles (UAVs), are 
equipped with different sensors, cameras, and other devices, enabling them to accomplish tasks that were 
difficult or nearly impossible for crewed vehicles to achieve [1]. Drones are able to capture real-time video 
and images over vast areas and are invaluable to security personnel and law enforcement surveillance 
operations. Drones are able to deliver packages to customers, fundamentally, transforming delivery services 
as companies like Amazon rapidly develop packages for autonomous drones [2]. For the agriculture sector, 
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coverage of sensor fusion methods (EKF, SLAM) which provides 
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their main use is to assist in the evaluation of crops to develop and manage irrigation systems, and accurately 
assess the use of fertilizers, thereby reducing costs and improving efficiency [3]. Drones have also transformed 
mapping and surveying as they are able to develop precise and current geographical data in remote or perilous 
areas [4]. 

The ability of drones to perform various tasks without human control significantly improves their 
efficacy. Sensor suites, control algorithms, and decision-making systems facilitate the highly automated 
navigation of drones, thereby leading to complete autonomy [5]. Situations where it would be dangerous for 
people to oversee the drone directly, like during search-and-rescue operations, infrastructure inspections, or 
agricultural field surveys are of primary such automated functions [6]. Nonetheless, the quest for reliable 
navigation autonomy is far from solved, as it needs systems to sort and analyze various data sets from disparate 
sensors in real-time. 

The addition of embedded AI technology is essential for enhancing the autonomy of drones. Embedded 
AI is the machine learning frameworks implemented on the drone. This technology enables the drone to make 
real-time autonomous decisions by analyzing sensor information without communicating with distant servers 
[7]. Such technology serves the drone autonomy in real-time applications to function without communicating 
with bordering systems for constant transmission which is crucial for self-governed deliveries, and self-
directed explorations in areas where GPS is not available [8]. Embedded AI allows drones to preform real-
time decision-making, path-planning, object detection, collision avoidance and considering all parameters in 
real-time to conserve power [9]. Developments in AI technology and hardware facilitate the use of 
sophisticated embedded AI models on small, low power consuming processors, making AI drones widely 
applicable in numerous scenarios [10]. 

B. Problem Statement 
Even with advancements in drone technology, autonomous navigation systems are still confronted 

with difficulties, particularly in real time processing, avoidance of obstacles, and environmental factors. The 
challenges posed by the complexity of real-time data cursorily arise from the need for drones to synthesize 
data gleaned from various sources including cameras, LiDAR, and IMUs. Efficient, powerful and real-time 
systems must be onboard, yet the AI algorithms remain rudimentary to the systems due to overwhelming 
resource requirements posed by weight, size and power constraints. Moreover, the limitations in the computing 
power required for high stake tasks such as path determination and decision making as well as object 
avoidance have to be streamlined to ensure there is little to no lag, particularly during high-speed maneuvers. 
Environmental factors also constitute a major problem to the performance of the drones. Take for example, 
the navigation challenges posed by GPS denied environments such as enclosed spaces, urban canyons, and 
areas with signal interference, making it difficult for drones to utilize the traditional GPS systems. Here, drones 
must rely on vision-based navigation systems, which are more prone to challenges such as poor illumination 
and motion blur, leading to greatly increased computational costs, and increased likelihood of errors arising 
from poor sensor calibration and fusion. 

C.  Objective 
This research aims to devise a drone navigation system capable of autonomous function in intricate 

settings, employing embedded AI. The system must be capable of autonomous navigation, using real-time 
sensor information, and AI-powered algorithms to make real-time decisions. The research will prioritize the 
development of effective control algorithms and the incorporation of AI models for obstacle avoidance, route 
navigation, and real-time decision-making. Furthermore, the research will seek ways to embed AI within a 
drone's onboard system to diminish dependence on external computing, thereby enhancing autonomy. This 
research aims to advance more dependable and effective autonomous drone systems by addressing the 
previously described challenges particularly those involving real-time data processing, the surrounding 
environment, and obstacle avoidance. Potential applications of these systems include autonomous delivery, 
surveillance, agriculture, and search-and-rescue operations. 

D.  Scope of the Study 
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This study aims to create a drone navigation system which incorporates embedded AI, whereby the 
drone can operate autonomously in complex environments. The system must operate without human 
interference by utilizing AI algorithms and sensor data analysis to make real-time decisions. The primary goal 
will be the development of control algorithms and the integration of AI models which will perform obstacle 
detection, route planning, and real-time decision-making. Further, the research will attempt to investigate the 
integration of AI within the drone computing to limit dependence on external processors to enhance 
operational autonomy. The work contributes to building reliable and efficient autonomous drones for complex 
real-time operational environments by overcoming the identified challenges in real-time data processing, 
environmental conditions, and obstacle avoidance. Target sectors for autonomous drones include delivery, 
surveillance, agriculture and search and rescue missions. 

E. Research Questions 
RQ1: How can AI be effectively embedded into drones for real-time autonomous navigation? 
RQ2: What are the key design challenges in embedded AI for drone navigation? 
RQ3: How can embedded AI improve the autonomy and performance of drones in dynamic environments? 

F. Significance of the Study 
This research underlines the growing importance of autonomous drone technologies, specifically 

drones that use artificial intelligence and embedded system technologies. With the development of a self-
contained, embedded AI powered, real time autonomous navigation system, this research will allow drones to 
perform fully autonomous real time tasks without external computational delinking for the first time. This 
breakthrough will be invaluable in the delivery, surveillance, agriculture, and search and rescue sectors, where 
drones are employed for rapidly changing and complicated workflows. This research will be instrumental in 
demonstrating the efficiency, reliability, and versatility of embedded AI in dynamic drone applications to 
improve drone adaptability across various workflows. 
LITERATURE REVIEW 

A.  Autonomous Drone Navigation 
Here, decision-making, activity execution, and data assessment real-time tasks performed by onboard 

sensors are created to define autonomous drone performing navigation. For autonomous navigation, there exist 
an array of technologies, each presenting a specific set of benefits and drawbacks [11]. Among the most 
prevalent is GPS-based navigation, which cloud users GPS’s satellite signals to determine the drone’s location 
[12]. While GPS navigation delivery near real-time precision outdoors, it has challenges indoors and in GPS-
denied surroundings such as urban forests, canyons, and dense suburbs. The situation opens new opportunities 
for vision-based navigation technologies where drones empowered by cameras and computer vision 
algorithms identify and avoid obstacles [13]. Through machine vision and advanced image processing 
algorithms, drones generate real-time contour maps of their environment, a necessity for them to detect 
obstacles of navigation and track moving targets. 

In autonomous drone navigation, sensor fusion also plays a significant role. This technique involves 
the integration of multiple sensors, including LiDAR, IMUs, cameras, and ultrasonic sensors, to improve the 
drone's environmental perception. Sensor integration helps the system compensate for the individual 
weaknesses of the sensors; for example, the range limitation of ultrasonic sensors and the cameras’ 
performance in poor lighting [14]. Another technique, which has gained prevalence particularly in drone 
navigation for environments lacking GPS, is simultaneous localization and mapping or SLAM. The SLAM 
algorithm allows the drone to both map an unknown environment and track its position in real-time. While 
implementing SLAM is beneficial in many situations, the heavy computational requirements pose a problem 
for real-time usage. The challenges posed by SLAM don’t mean that navigation systems offer no challenges. 
Problems occur with GPS-based navigation in cities, as the signal becomes weak or blocked [15]. Vision-
based systems also have challenges and can be negatively impacted by low light or fog. Sensor fusion and 
SLAM improve navigation systems; however, their lack of computational capacity can prevent the system 
from functioning in real-time [16]. 
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The challenges described above highlight the necessity of further advancements in algorithms, sensors 
and the computational architectures that provide the basis for dependable and effective autonomous navigation 
for drones. 

B. Embedded AI in Robotics 
Embedded AI refers to the installation of artificial intelligence in hardware units to perform intelligent 

tasks locally without the use of cloud computing or remote servers. An example of the use of Embedded AI 
in autonomous systems is deployed drones where real time and low latency decision making is system critical 
[17]. The use of embedded AI in robotics particularly drones allows them to perform tasks in changing 
environments autonomously. They can respond to real time modifications and execute tasks without waiting 
for commands from the external control systems. Embedded AI-equipped systems perceive sensed 
information and analyze it in real time without the need of external communicative systems. This leads to 
reduced delays and higher system general performance [18]. The principal AI driven technologies used in 
embedded systems are neural networks, reinforcement learning and support vector machines.  Neural 
networks, and particularly the deep learning models, are instrumental for drones as they need to recognize 
various objects, detect obstacles, and analyze numerous streams of visual data coming from cameras and 
sensors. Image classification and object detection tasks are primarily carried out by deep convolutional neural 
networks [19]. These networks assist drones in making environment understanding and decision making tasks. 
In reinforcement learning, the machine learning system advances by interacting within its environment. 

Autonomy of drone systems has been increasingly facilitated through embedded AI technologies. 
However, there are issues that AI embedded technologies face. One of the most important issues is the 
balancing act between the drone systems’ size, weight, and power constraints and the AI algorithms’ 
computational requirements [20, 34]. Embedded systems are inherently resource constrained. Therefore, 
employing AI on embedded systems requires the embedded systems optimization and the possible inclusion 
of advanced and dedicated systems such as FPGAs and NVIDIA Jetson SoCs. Such systems provide real-time 
and embedded decision-making capabilities, yet the quest for advanced power and resource balance continues 
in robotics AI systems. 

C. Navigation and Control Algorithms 
Autonomous drone systems rely on navigation and control algorithms to determine how to safely and 

efficiently operate in various environments. Within drone systems, classical control algorithms have included 
the use of proportional-integral-derivative control or simply PID control. PID control systems adjust the 
drone's position and orientation in space in a closed-loop fashion by defining a set position (target position or 
angle) and iteratively correcting current positional errors until the drone reaches the set position. While PID 
control systems are uncomplicated and require minimal processing power, they are unable to control systems 
in complex or dynamic multi-variable environments [21]. In response to these challenges, control systems 
based on artificial intelligence prove more adaptive. Using machine learning, AI systems predict drone 
behaviors for autonomous path planning and obstacle avoidance. Control deep learning algorithms predict and 
adjust critical flight parameters in real time [22, 33]. For dynamic environments, reinforcement learning 
algorithms are integrated, enabling the drone to self-determine and optimize real-time control parameters 
based on a set performance criterion. This approach of using machine learning for real-time performance 
adjustment allows a drone to optimize its control parameters in response to a changing environment [23]. 

As an illustration, in dynamic environments with moving obstacles, RL-based controllers can allow 
drones to shift their trajectories to avoid collisions autonomously. Another AI-based method is model 
predictive control (MPC), which leverages a model of the drone's dynamics to forecast future states, then 
optimizes control actions within a finite time period [24]. MPC is capable of resource management, such as 
obstacle avoidance, but due to high computational demands, it is difficult to implement universally across all 
resources [25]. 

Even though the state of the data lingers within the described framework thus generates questions of 
cut off dates for algorithms. They most definitely are flexible and adaptable. Algorithms have the challenge 
of being embedded. AI algorithms have great potential as control systems [26, 35]. They fall within the corners 
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of restrained traditional control within the specified areas. Comparably AI-Navigation as well as control within 
complex environments under the described circumstances remains unrivaled. 
 

D. Challenges in Autonomous Drone Navigation 
The development of fully autonomous systems is challenged by several factors. In the case of 

autonomous drones, the complexity of real-time decision-making systems is of particular importance. The 
systems must interpret various streams of real-time sensor data, including photographs, LiDAR distance 
measurements, and IMU motion data [27, 32]. In dynamic environments, data must be processed quickly to 
allow timely decision making; otherwise, the system will experience a lag, navigation of the environment will 
be suboptimal, and the drone may collide with the environment. Inaccurate and unreliable navigation sensors 
will also impair system performance. For instance, low-light environments may cause cameras to fail, cluttered 
environments may cause LiDAR sensors to underperform, and IMUs may drift, making position and 
orientation of the drone overly inaccurate. Sensor fusion mathematically and statistically addresses some of 
these issues, yet additional sensor data increases system computational complexity. Autonomous navigation 
is also inhibited by the need for large computational resources, especially for deep learning and reinforcement 
learning systems. 

E. Applications of AI-Driven Drone Systems 
Across multiple industries, AI-powered drones have become versatile tools. In farming, AI drones 

assess soil conditions, apply fertilizers or pesticides, and lightweight drones perform autonomous crop health 
assessments thereby stimulating the economic efficiency of farming practices. AI algorithms facilitate 
farmers’ targeting action through pest infestation and nutrient deficiency aerial image analysis. In search-and-
rescue, AI drones perform aerial surveillance in disaster areas, assist in locating survivors, and offer real-time 
situational awareness. Such drones traverse challenging environments and utilize thermal vision and AI object 
detection to locate survivors and circumvent obstacles [28]. AI aids in autonomous navigation of GPS-
equipped drones in GPS deprived areas like indoors or underground. In the commercial sector, Amazon and 
Google use AI to optimize drone’s delivery routes, assess obstacles, reduce flight time, and energy use giving 
parcels. AI further enhances drone operational safety by identifying potential risks and autonomously avoiding 
safe routes. 
AI AND CONTROL ALGORITHM DEVELOPMENT 

A.  Control Algorithms 
Control algorithms guide and stabilize autonomous drones as they navigate different surroundings. 

These algorithms use the data received from the drones’ various sensors and adjust the drones’ positions, 
speeds and trajectories to achieve the desired flight parameters. 

i. Classical Control Methods 
In drone navigation, proportional-integral-derivative (PID) controllers are some of the most commonly 

used classical control algorithms. The controllers modify the drone's pitch, roll, and yaw in order to reduce 
the error to the desired state in terms of position and/or orientation. The proportional component deals with 
the current error, the integral component deals with errors from the past, while the derivative component 
predicts the error to come, based on the rate of change of the error. The computational simplicity of the PID 
controller offers ease of use, though for most drones, it is sufficient just for basic stabilisation and control of 
altitude. Still, PID controllers may lower the system performance in instances of complex and dynamic 
environments in which the boundaries are rapidly changing, and entail passive control [29]. Linear Quadratic 
Regulators (LQR) are another example of classical control algorithms for autonomous drone navigation. 
Operating as an optimal control method, LQR derives control inputs from the minimisation of a cost function, 
which encompasses both system state (e.g. position, velocity) and control (e.g. motor speed) exertion 
variables. Thus, in some instances, it outperforms PID, particularly in complex systems with multiple control 
inputs and interdependent control parameters. 

ii. AI-Based Control Methods 
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The need for AI-enabled control techniques is necessary for the use of drones in more complicated 
scenarios. AI control employs neural networks as they can learn complicated features in the data. After training 
a neural networks with control policies for a drone, it can learn to adapt to shifting environments and use real 
time data to make rational decisions. Deep reinforcement learning (DRL) is a method used to guide drones in 
making real time decisions on route planning and obstacle avoidance. Drones learn to adapt and make 
behavioral changes as they engage with different terrains. Another AI control technique is model predictive 
control (MPC), in which a controller uses a drone's dynamics to create future drone state predictions and 
formulate control-optimization- drone commands for a limited predictive time horizon. Dynamic obstacle 
avoidance and work drone constraint, such as restricted distance to obstacle while constantly minimizing 
energy expenditure, MP control drones calculates and solves control functions on the command inputs. MP 
control is more advanced and effective than classical techniques but, it loses performance in predictive 
embedded systems. Real-time execution in embedded systems requires a lot of embedded systems in 
predictive MPC drones [30, 31]. 

B. AI Model Training 
Training AI models for drone navigation involves several stages, including data collection, 

preprocessing, and model selection. The data used for training AI models must capture the nuances of the 
drone’s environment to ensure the system can make accurate predictions and decisions in real-time. 

i. Data Collection and Preprocessing 
Data collection is the first stage in the training process of AI. With drones, this implies the collection 

of data from cameras, LiDAR sensors, IMUs, and different instruments mounted on drones. For instance, 
cameras, along with the other sensors, collect images that assist in visual navigation and in detecting obstacles. 
For final models to be functionally robust, data collection must capture varying environmental, lighting, and 
dynamically changing obstacle conditions. In addition to IMU sensors, which record and transmit position, 
velocity, and attitude information, and thus help in model training, will be particularly useful in situations 
when fusion of different models is performed. Image data preprocessing involves manipulations that 
systematically change images to enhance, normalize, and augment images through rotation, scaling, and other 
color adjustments to make the model robust to environmental variations. For the sensor data, techniques such 
as low-pass and high-pass filtering helps in noise reduction and to smoothen data. In the indexes, data marking 
and labeling is also major preparatory work. For object detection problems, images must have annotations 
indicate obstacle locations that must be avoided. This structured training helps the neural network learn to 
identify obstacles. 

ii. Model Selection 
Subsequent to data collection and preprocessing, model selection is the next step. Convolutional neural 

networks (CNNs) vastly outperform other options for visual navigation and obstacle detection. Designed to 
hierarchically learn the spatial structures of and relations within images, CNNs excel at object detection and 
classification. Static and dynamic obstacles (pedestrians and vehicles) can all be trained as targets for CNNs 
for obstacle avoidance. For the decision-making component of the tasks, that is controlling the drones, 
reinforcement learning (RL) is the most common approach. A drone can learn optimal control policies through 
trial and error and dynamically refine a decision-making process to adapt to new challenges. As a result of 
feedback through rewards and punishments, RL is also described as teach game and move pattern. Deep 
Reinforcement Learning (DRL) is one of the most taxing applications of neural networks, as it combines deep 
learning with RL, and allows for real-time complex decision making with minimal input. Path planning and 
dynamic obstacle avoidance are advanced tasks that drones can learn to perform with DRL. A deep neural 
network can manage a decision-making process through high-dimensional sensory input and provide feedback 
that is safe and efficient for real-time operation. 

C. Path Planning and Obstacle Avoidance 
For autonomous drone navigation, path planning and the avoidance of obstacles are critical 

components. While path planning identifies the best possible route the drone should take from its current 
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position to the desired destination. However, avoidance of obstacles and safe navigation in dynamically 
changing environments are an integral part of drone navigation. 

i. Development of Path Planning Algorithms 
Autonomous drone systems utilize pathfinding methods like the A (A-STAR) * algorithm and Rapidly-

Exploring Random Trees (RRT). A* identifies the shortest path from the starting point to the destination, all 
while avoiding obstacles by assessing the cost required to reach the target and merging the current cost with 
an estimated remaining cost and distance. It excels in graphically representable environments like grids; 
constraints can be mapped out easily. However, A* is less suited to hyper dynamic environments where real-
time changes in constraints occur. In contrast, RRT attends to pathfinding in continuous space and works 
superbly in intricate obstacle-dense environments as it incrementally constructs a goal-directed tree of possible 
routes. Because RRT can rapidly produce a satisfactory path, it is appropriate for application in real-time, 
though it does not guarantee pathfinding accuracy. However, RRT is easily transcend able by RRT* as it 
develops a more intricate environment for pathfinding and iterative refinement for optimal pathfinding. 

ii. Integration of AI for Dynamic Obstacle Avoidance 
The adoption of artificial intelligence models, more specifically deep reinforcement learning (DRL), 

within real-time dynamic decision making for systems of path planning and obstacle avoidance, is on the rise. 
When developing path planning for scenarios with moving obstacles, such as pedestrians or ditches, and other 
drones, the classical methods may fall short with their anticipation and adaptability to changes surrounding 
the de-vel-oping path. With DRL, the drone can learn how to circumvent obstacles as the decision-making 
process of DRL boosts the optimization process with every encounter. Obstacle avoidance and trajectory 
optimization are by no means trivial tasks. However, with sensor data and environment feedback, DRL models 
empower the drone to dynamically re-plan its DRL, thereby circumventing their obstacles and efficiently 
maintaining a safe trajectory. The drone must also avoid newly introduced obstacles. For instance, if a moving 
pedestrian crosses a drone's path, the drone must decide within milliseconds to divert or take evasive action. 
The integration of deep learning and reinforcement learning allows for autonomous decision-making to 
minimize the risk of collision and maximize flight efficiency. 

D. Navigation and Localization Techniques 
i. Sensor Fusion Techniques for Accurate Localization 

Sensor fusion is the process of integrating numerous sensors to enhance the precision and 
dependability of localization. Extended Kalman Filter (EKF) is one of the prevalent techniques within 
navigation systems on drones wherein EKF is employed to combine estimates derived from IMU, GPS, and 
other sensors. As a recursive filter, the EKF’s function is to predict the state of a given system (state over time, 
system being the drone) by merging disparate sensor estimates of position and velocity (position and velocity 
being the state of system) and eliminating noise, resulting in an estimate of higher precision than the separate 
sensors. Another technique for localization is simultaneous localization and mapping (SLAM) on drones, more 
specifically, where GPS signals are available. SLAM is the only option for drones to autonomously construct 
a map of an unknown area while simultaneously keeping track of where the drone is in the map. This is critical 
for navigation in locations such as indoors or underground, where GPS signals are often severely attenuated 
or absent. Nonetheless, SLAM can be resource-hungry and is often not feasible for real-time applications 
without powerful computational devices. 

ii. Real-Time Map Updating and Path Optimization Using AI 
AI contributes to localization through real-time updates to maps and optimized pathways. A case in 

point is the use of drones powered by deep learning algorithms to discover and fix inaccuracies in 
environmental maps, refining the precision of maps. Moreover, AI assists in real-time core path optimization 
by detecting changes in the environment and adjusting the course in anticipation. Consider instances when an 
obstacle is predicted in the course of travel; the system will instantly compute and program an alternate path 
to guarantee a route that is safe and efficient. 

E. System Implementation 
i. Embedded AI Integration 
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Real-time autonomous navigation of drones closely depends on integrating AI into drones’ embedded 
computing systems. Autonomy requires integration of trained AI models on the systems, including obstacle 
detection, path planning, and decision-making, allowing the drone to operate without external computing 
resources. For lightweight and energy-efficient embedded AI systems, considerable power for AI tasks and 
computing resources are needed, for example, specialized embedded platforms such as NVIDIA Jetson or 
Raspberry Pi. To ensure the platforms are used effectively without unnecessary power and memory 
consumption, embedded AI models need optimization for AI tasks to be performed rapidly and reliably. 
Critical to mission success and safety are the real-time execution and embedded AI systems’ ability to adjust 
on-the-fly to sensor data. There the focus on AI execution speed is to use advanced optimization, including 
model pruning and quantization, and hardware acceleration, like GPU or FPGA. Since programming AI to 
run on embedded systems reduces latency, drones operated in real-time scenarios are more autonomous. 

ii. Hardware-Software Interface 
The convergence of hardware and software is crucial for the proper functioning of the drone's sensors 

and actuators in relation to the AI algorithms. IMU, GPS, camera and LiDAR and other hardware components 
need to be properly calibrated, integrated, and synchronized to the software control loop. In this way, the 
integrated system can analyze real-time sensor data and issue actuator commands (e.g., motors, gimbals) to 
alter the drone's flight. Real-time sensor integration demands efficient hardware and software communication. 
RESULTS AND DISCUSSION 

A. Experimental Setup 
We present the results of the experimental testing and evaluation of the autonomous drone navigation 

system with embedded AI. The goal is to assess how well the system performs in various real-world scenarios 
and discuss the challenges faced during implementation. 

i. Hardware Setup 
Drone Platform: The DJI Phantom 4 quadcopter was used as the base platform due to its reliability, ease of 
integration, and the availability of additional control ports for modifying the system’s capabilities. 
Onboard Computer: The onboard computer used for running AI models was the NVIDIA Jetson Xavier NX. 
This platform was chosen for its high processing power, specifically for running deep learning models in real-
time. The Xavier NX features an 8-core ARM CPU and 384 CUDA cores, which makes it ideal for edge AI 
tasks. 

ii. Sensors 
• LiDAR: The LiDAR-Lite v3 was used for depth sensing and generating 3D maps. 
• RGB Camera: A Sony IMX219 camera was mounted on the drone to capture real-time images for 
obstacle detection and environment mapping. 
• IMU: The drone was equipped with an InvenSense MPU-9250 IMU, which provided data about the 
drone’s acceleration, orientation, and velocity. 
• Ultrasonic Sensors: These were used to detect obstacles at short range, improving the system’s ability 
to avoid collisions in confined spaces. 
• Communication System: Communication between the drone and the control system was established 
via Wi-Fi for telemetry, while a Bluetooth connection was used for setup and maintenance. 

iii. Software Setup 
• AI Framework: TensorFlow Lite was used for the deployment of deep learning models, while OpenCV 
was employed for computer vision tasks like obstacle detection and object tracking. 
• Control Algorithms: The drone’s flight was controlled using a combination of PID controllers and 
Reinforcement Learning (RL). The PID controller was responsible for maintaining stability during flight, 
while RL was used for path planning and decision-making. 
• Operating System: The onboard computer ran a custom version of Ubuntu 18.04 tailored to the 
NVIDIA Jetson platform. This OS supported all necessary libraries for real-time AI processing and sensor 
integration. 

B. Evaluation of AI Models 
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In this section, we evaluate the performance of the AI models used for vision-based navigation, 
obstacle detection, and decision-making. These evaluations focus on the accuracy, robustness, and real-time 
processing capabilities of the models. 

i. Model Overview 
• Convolutional Neural Networks (CNNs): Used for image classification and obstacle detection tasks. 
The CNN model was trained to detect static and dynamic obstacles, such as walls, pedestrians, and moving 
vehicles. 
• Reinforcement Learning (RL): Employed for path planning and decision-making. The RL algorithm 
was designed to allow the drone to navigate complex environments by learning from feedback provided by its 
actions. 

ii. Model Performance 
The CNN model performed well in object detection, but its performance was dependent on the image 

resolution, lighting, and the presence of dynamic obstructions. Conversely, the RL model achieved high 
success in dynamic decision-making but struggled with high-speed navigation due to the constrained 
processing capacity of the onboard AI. 

 

Task 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-Score 

(%) 
Processing Time 

(ms) 

Static Obstacle Detection 92 93 91 92 50 

Dynamic Obstacle 
Detection 

85 87 83 85 70 

Object Tracking 90 88 92 90 60 

 
Table 1: CNN Model Performance Evaluation 

The performance of the CNN was evaluated through precision, recall, and F1-score, pertaining to both 
static and dynamic obstacles. The F1-scores of the model was 92% and 85% for static and dynamic obstacles 
respectively. This shows that the model was effective in controlled environments; however, improvements 
were needed for obstacles that were fast moving. 

iii. RL Path Planning Performance 
Advancements in path planning and decision-making have been seen in models employing 

reinforcement learning. An agent, in this case a drone, was trained using a reward system to avoid and navigate 
around obstacles, receiving rewards for successful avoidance and incurring penalties for collisions. 

Task 
Success Rate 

(%) 
Average Path 

Length (m) 
Average Collision 

Rate (%) 
Training Time 

(hrs) 

Indoor Navigation 95 35 3 30 

Outdoor Navigation 93 50 4 45 

Dynamic Obstacle 
Navigation 

90 60 5 40 

 
Table 2: RL Path Planning Performance 

While the success rates for the RL model in both indoor and outdoor navigation are commendably 
high, the observed increase in collision rates remains concerning, especially in settings with fluid, dynamic 
obstacles. In terms of training, the RL model required between 30 to 45 hours, which was primarily dependent 
on the difficulty of the navigation tasks. 

C. Performance Metrics 
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This section presents an analysis of the system's performance using key metrics such as flight stability, 
obstacle avoidance success rate, and computational efficiency. 

i. Flight Stability 
Flight stability was measured by evaluating the drone’s ability to maintain steady flight while 

navigating through various environments. The stability metrics were derived from the drone’s orientation data 
(pitch, roll, yaw) provided by the IMU. 

Scenario 
Pitch Stability 

(°) 
Roll Stability 

(°) 
Yaw Stability 

(°) 
Max Drift 

(m) 
Battery Consumption 

(Wh) 

Indoor Navigation ±1.5 ±1.5 ±1.0 0.4 10 

Outdoor 
Navigation 

±2.0 ±2.0 ±1.5 1.0 15 

Autonomous 
Landing 

±1.0 ±1.0 ±1.0 0.3 8 

Table 3: Flight Stability Metrics 

The drone exhibited excellent stability during both indoor and outdoor navigation, with minimal drift. 
The autonomous landing scenario showed precise control, with the drone landing within a 0.3-meter range of 
the target. 

ii. Obstacle Avoidance 
Different scenarios were introduced in the environment, both static and dynamic, for the obstacle 

avoidance system testing phase. Multiple scenarios were created for system evaluation based on different 
metrics. The system's success rate in avoiding collisions permeated each scenario as the only evaluation 
metric. 

Environment 
Detection Accuracy 

(%) 
Avoidance Success Rate 

(%) 
Average Processing Time 

(ms) 

Indoor (Static) 92 95 100 

Outdoor 
(Dynamic) 

85 88 150 

Table 4: Obstacle Avoidance Performance 

The obstacle detection system managed to avoid static obstacles with great precision. Yet, the 
introduction of dynamic obstacles resulted in a slight decrease in the success rate for avoidance, illustrating 
system dependency on environmental considerations such as sensor performance and processing duration. 

iii. Computational Efficiency 
Real-time performance was essential for the system, especially during flight. Processing times were 

recorded for tasks like image classification, obstacle detection, and path planning. 
 

Task Processing Time (ms) GPU Utilization (%) CPU Utilization (%) 

Image Classification 45 70 30 

Obstacle Detection 80 85 55 

Path Planning 150 65 45 

Table 5: Computational Performance 

The system achieved acceptable real-time processing speeds for image classification and obstacle 
detection, but path planning tasks took longer, especially in dynamic environments. 
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D. Comparison with Existing Solutions 
To benchmark the performance of the developed system, a comparison was made with other commercially 
available autonomous drones such as Skydio 2 and Parrot Anafi USA. 

i. Comparative Performance 

Feature Our System Skydio 2 Parrot Anafi USA 

Obstacle Detection Accuracy 92% 85% 88% 

Path Planning Efficiency 95% 90% 85% 

Battery Life (min) 20 30 25 

Cost (USD) 1500 2500 1900 
Table 6: Comparative Performance of Drones 

Particularly in the indoor settings, our system demonstrated superior obstacle detection accuracy and 
path planning efficiency compared to the Skydio 2, despite having somewhat lower battery life, which 
suggests a possible trade-off in performance and battery consumption. 
     E. Limitations and Challenges 
     i.           Computational Constraints 
Despite the powerful capabilities of the NVIDIA Jetson Xavier NX, the onboard system faced limitations 
when processing complex AI models in real-time, particularly during high-speed flight. 

ii. Sensor Accuracy 
The reliance on visual sensors for obstacle detection led to challenges in environments with poor lighting or 
rapidly changing conditions. Future improvements in multi-sensor fusion are needed to address these issues. 

iii. Real-Time Decision-Making 
The reinforcement learning algorithm showed significant promise but required more optimization to handle 
decision-making in real-time without lag, especially in fast-moving environments. 
CONCLUSION 

The design, development, and evaluation of embedded AI based autonomous navigation systems for 
AI integrated autonomous drones is an important milestone in robotics and AI. Drone autonomous navigation 
in complex environments became possible by embedding AI systems with real-time flight control algorithms. 
Using embedded AI systems with NVIDIA Jetson Xavier NX AI powered embedded systems and deep 
learning models for obstacle detection, path planning, and real-time decision making is used. Evaluation in a 
variety of scenarios such as indoor navigation, outdoor navigation and dynamic obstacle avoidance showed 
outstanding performance of the system. The implementation showed some challenges such as the need for 
more efficient real-time decision making and other computational challenges. Advanced system capabilities 
relating to flight stability, path optimization, and obstacle avoidance defied the challenges. Challenges 
pertaining to system capabilities such as dynamic decision making and real time system computing showed 
the need to develop navigation systems for more complex, autonomous drones. 

Research in autonomous navigation and artificial intelligence integrated within drone systems 
pioneering. Among the notable advancements includes training deep learning models on embedded systems 
for real-time autonomous flight control. This allows drones to make rational decisions and navigate 
multifaceted terrain without human assistance. Furthermore, the novel implementation of reinforcement 
learning to dynamic path planning and decision-making allows drones to alter course autonomously within 
shifting environmental parameters. The integration of artificial intelligence models for visual recognition and 
sensor fusion techniques profoundly advances real-time situational understanding. This enhances a drone’s 
ability to function in diverse environments. 
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In the future, there will undoubtedly be many opportunities to expand the capabilities of the system. 
One of the most important potential advancements involves the optimization of AI models, which will be a 
requirement for greater system speeds and more complex task real-time decision-making. Advances in 
reinforcement learning and deep learning may offer drones the ability to take on more difficult tasks like low-
light navigation and the more troubling and dynamic obstacles. Battery optimization is critical, as the system 
will benefit from un-tethered longer missions. Other AI applications to be embedded in drone systems like 
swarm robotics and multi-agent systems, will be game changers in thousands of industries, including, but not 
limited to, agriculture, search-and-rescue missions, and environmental monitoring. Such advancements will 
improve the capabilities of the drones themselves, but will also enable highly complex coordinating tasks to 
be performed in large numbers. This research serves as a springboard to the more complex and numerous 
autonomous drones equipped with AI and the myriad of uses in diverse fields and industries that will follow. 
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