

Volume 2, Issue 2, 2024 https://jecir.com/

A COMPREHENSIVE REVIEW OF ASSET MANAGEMENT SYSTEMS: TRENDS, TECHNOLOGIES, AND FUTURE DIRECTIONS Syed Muhammad Kashif ¹, Fariba Chowdhury ²

Affiliations

¹ Masters in Software Engineering, Wuhan University, China Email: smkashif145@gmail.com

² Master's in Strategic Management, University of the Cumberlands, Williamsburg, USA Email: fchowdhury16237@ucumberlands

Corresponding Author's Email

.edu

¹ smkashif145@gmail.com

License:

Abstract

The focus of this review covers the history, application, and technological advancement of Asset Management Systems (AMS) with further emphasis on their contribution to operational efficiency, organizational agility, and predictive maintenance within asset-heavy industries. The integration of core digital technologies, including the IoT, AI, cloud computing, and blockchain, into AMS modern frameworks is the key focus of this paper. This narrative review study consolidates more than 65 peer-reviewed journal articles, industry reports, and conference proceedings published from 2005 to 2023, with the use of a systematic narrative literature review approach. The literature was processed through preestablished inclusion and exclusion criteria and processed through thematic analysis to categorize the findings into a defined set of technological trends, cross-industry applications, identified gaps, challenges, and untapped prospects for solution-oriented research. This review finds that AMS are no longer static data repositories; alongside IoT, AI, cloud, and blockchain technologies, they are active responsive data ecosystems. Van der Meer et al. assert that these technologies allow for real-time and predictive analytics, secure custodianship of records, and multi-platform data accessibility. Advanced technologies enable proactive monitoring and analytics at different levels, yet barriers such as legacy system integration, high costs of implementation, available cybersecurity risks, and gaps in skilled personnel pose challenges. These sectorspecific case studies show that enhanced uptime of assets and accurate cost control while maintaining regulatory compliance are the main advantages of AMS. This paper also highlights limited existing research on standardization, human-centered design, and longitudinal assessment of performance evaluation as critical gaps. This paper does an extensive integration of the development of AMS systems and technology from multiple disciplines. It fills a void between knowledge and practical use in industry, providing practical recommendations to modern business operators for use by engineers, IT managers, or even policymakers seeking to optimize asset operations. These findings are important for both discourse in the academic world and strategy development in the real world regarding digital asset management.

Keywords: Asset Management Systems, Internet of Things (IoT), Artificial Intelligence (AI), Cloud Computing, Block chain

I. INTRODUCTION

With the current pace of change in the digital economy, asset management systems (AMS) have become instrumental in achieving operational excellence, cost optimization, and sustainability across various industries. Manual processes along with disparate data systems slowed firms down, so asset

Volume 2, Issue 2, 2024 https://jecir.com/

management was confined to basic maintenance and tracking of physical assets [22]. Now, thanks to the Information and Communication Technologies (ICT) revolution, AMS have evolved into sophisticated, networked systems that supervise assets, predict failures, maximize productivity, and support strategic business goals [40].

Amadi-Echendu et al. defined that asset management as the planning and controlling of the lifecycle functions of an asset to optimize its cost efficiency throughout its life [5]. In the industrial sector, an asset can be a piece of machinery, a vehicle, IT equipment, tangible, or even intangible goods like Infrastructure and intellectual property. The ISO 55000 series from the International Organization for Standardization (ISO) 2014 set ilo standards for asset management principles, terminology, and requirements. It provides AMS standards that help unify and standardize the various terms and clauses used, thus aiding in promoting their adoption [34].

The development of AMS is divided into four parts: manual maintenance, digitized but fragmented, integrated, and smart systems. A combination of logs and paper files was the most accessible option for organizations during the first phase. The second phase added Computerized Maintenance Management Systems (CMMS) with improved documentation, although its lack of integration severely limited further scalability [7]. The introduction of Enterprise Asset Management (EAM) systems during the third phase provided inter-departmental consolidation of asset data. Presently, AMS is transitioning to the fourth phase, which incorporates the Internet of Things (IoT), Artificial Intelligence (AI), cloud computing, and blockchain technology [16].

The emergence of Industry 4.0 brought a significant shift in the scope of AMS as applied to industrial and service ecosystems. Now, assets with IoT sensors and actuators are monitored in real-time and their data can be collected for advanced analytics [30]. AI algorithm models use this data to anticipate equipment malfunctions, advice on maintenance framework timelines, and aid in decision processes [1]. With regard to other enterprise systems like ERP and SCADA, cloud systems offer enhanced control, shared resources, and easy accessibility [18]. Although still in infancy, blockchain has promising prospects for safeguarding asset records, enhancing auditability, and protecting against unauthorized changes [11].

The importance of AMS goes beyond improving productivity. There is growing pressure for companies, particularly in asset-heavy sectors like manufacturing, transportation, utilities, and healthcare, to showcase trustworthiness, sustainability, and compliance within their operations frameworks [32]. Strategic management of assets is fundamental to achieving KPIs, such as maximizing equipment availability, minimizing costs over the asset's life, and reducing energy consumption [31]. Additionally, efficient asset management is vital to ensuring that the operation of tangible assets is synchronized with the corporate strategies, which helps to optimize resource allocation, and risk management [36].

These benefits notwithstanding, the implementation of AMS systems is laden with challenges. Problems related to system integration with legacy solutions, data sharing, cybersecurity, and user acceptance are highlighted as major obstacles [39]. Furthermore, the absence of coherent data frameworks within many organizations, coupled with lack of real-time processing capabilities, constrains the full advantages of intelligent AMS [17].

Since organizations have complex digital assets and tools available to them, there is a gap with AMS are emerging technologies that requires synthesis of the current state [3]. A few past reviews have covered specific components of asset management, including maintenance strategies, condition monitoring using EAM and EAM platforms. Nevertheless, the reviews neglecting other parts advanced with technology, along with dealing with cross-sector gaps, implementation challenges, and future opportunities [20].

This gap will be covered by reviewing various AMS, focusing on four potent technologies: Internet of Things, Artificial Intelligence, Cloud Computing, and Blockchain. Managing assets will create more value for an organization undergoing transformation through these technologies. The sectors focusing on these technologies include aids to AMS such as transport, manufacturing, healthcare, and utilities. Also discussed are strategies perceived AMS effectiveness, challenges organism faced, and benefits gained.

Volume 2, Issue 2, 2024 https://jecir.com/

II. LITERATURE REVIEW

During the past twenty years, the literature on asset management systems (AMS) has changed dramatically. This is clearly a result of the technological innovation, practices within the industry, and global standards. This part offers a systematic review of literature, which is classified into fundamental thematic areas that illustrate the theoretical, technological, and application aspects of developments in AMS.

A. Historical Evolution of Asset Management

The evolution of the practices of asset management is found in the maintenance of industries, and in the management of company financial assets. Earlier works focused upon maintenance-centered approaches like preventive and corrective maintenance [33]. With the development of sensors and the introduction of Computerized Maintenance Management Systems (CMMS), condition-based and predictive maintenance processes became possible and widely adopted [25].

The introduction of Enterprise Asset Management (EAM) systems marked an important evolutionary step. From the mere maintenance of assets, EAM systems added the multifunctional dimensions of planning, acquisition, operation, and decommissioning [9]. These platforms provided integrated solutions, connecting asset data with financial, human resource, and operational data [2].

B. Standards and Frameworks in Asset Management

Globally accepted standards have been key in formalizing the practices of managing assets. [12] states that the British Standard PAS 55 introduced by the Institute of Asset Management became the basis for what later became ISO 55000. According [29] standard ISO 55000 furnishes a framework for asset management encompassing value realization, lifecycle thinking, and risk management.

A number of studies have evaluated the adoption and implementation barriers of these standards. [29] Identifies organizational misalignment and maturity gaps as hindering factors to effective ISO 55000 adoption [19] claim compliance is often shallow in the absence of technological and cultural integration.

C. Integration with Information and Communication Technologies (ICT)

AMS has experienced dramatic shifts with the integration of ICT. Real time monitoring and data collection is now possible through IoT devices [28]. The application of sensors into AMS has been proven to facilitate predictive analytics and automated decision-making [21]. Adopting cloud AMS solutions assists in reducing capital costs while enhancing accessibility with the help of cloud computing infrastructure as referred by [37]. Moreover, [14] indicate that blockchain technology, although emergent, has drawn interest because of its potential for safeguarding asset histories and transparent transaction facilitation.

D. The Impact of Artificial Intelligence on Asset Management Systems

Artificial intelligence has made significant contributions to asset management by expanding the scope of diagnostics, prognostics, and optimization. In the asset management sector, the majority of tasks related to predictive maintenance and anomaly detection hinges on the implementation of machine learning algorithms [29]. Deep learning has shown great promise in achieving high levels of accuracy with complex and often unstructured raw sensor inputs in equipment degradation monitoring [35]. Deshpande examined AI applications in AMS, offering comprehensive insights on the implementation of AI techniques ranging from supervised to reinforcement learning in predictive maintenance [14]. Even so, the lack of explain ability and trust, especially in an AI's influence on critical operational decisions through its outputs, is a persisting concern [38].

E. Studies by Sector

AMS has been put into action in various fields, each with its distinct set of problems and needs. In the manufacturing sector, AMS is applied for equipment tracking, inventory management, and optimizing production lines [14]. In transportation, fleet management incorporates AMS with GPS and telematics for refined route and vehicle usage optimization [15].

Utility industries, especially water and power, utilize AMS for asset condition monitoring and compliance with policies [41]. In medicine, AMS aids in monitoring the usage of medical devices, arranging their maintenance, and ensuring adherence to provided healthcare services standards [8].

F. Measurement and Benefits of Performance

Volume 2, Issue 2, 2024 https://jecir.com/

The benefits of AMS in academic papers have been analyzed the most. Reported results include minimized equipment downtime, increased lifespan of the assets, better compliance with laws, and improved financial management [13]. AMS are therefore seen as instrumental in modern business strategies. Assessing the value obtained through AMS is mostly done with Leading Indicators (LI) such as Overall Equipment Effectiveness (OEE), Mean Time Between Failures (MTBF), and Return on Assets (ROA) [15].

The previous citations suggest AMS is important to be aligned with organizational strategy, something needing further attention. Some focus on AMS metrics integration through Kaplan and Norton's (1996) Balanced Scorecard framework [4], [26].

G. Implantation Issues

Despite the clear benefits of AMS, implementation poses numerous challenges. Data quality, especially relating to system interoperability, is a significant concern with the amalgamation of legacy systems [13], and organizational inertia combined with a lack of skilled personnel makes effective adoption extremely difficult [15].

Cybersecurity becomes an increasing problem as well. The more AMS depend on cloud and IoT infrastructures, the more exposed they are to cyber hazards. According [41] secure communications and structured system audits are necessary to mitigate undue risks.

H. Research Missing Elements and Future Gaps

While existing literature on AMS is extensive, several inadequacies exist. The combination of AMS with modernized technologies like digital twins and edge computing remains mostly unexplored. Moreover, there is a gap in longitudinal approaches studying the enduring effects of AMS on organizational performance over time [10].

Another gap is the human factor in AMS. User training, change management, and user experience design as system engineering disciplines are very important for accomplishing successful implementation, but they receive very little attention in literature [24].

III. METHODOLOGY

This review follows a systematic narrative approach to integrate the academic and professional literature on asset management systems (AMS). The purpose is to demonstrate the increasing sophistication of AMS in the context of digital transformation, focusing on the contributions of IoT, AI, cloud computing, and blockchain technology.

A. Research Design

The research design used was based on the systematic literature review framework and the heuristics for engineering and information system reviews [27]. While this is not a full systematic review, the balance between comprehensiveness and rigor established clear, transparent processes for identifying relevant studies.

B. Data Sources and Search Strategy

In order to compile the most relevant information, the following academic databases were included:

- IEEE Xplore
- ScienceDirect (Elsevier)
- SpringerLink
- Scopus
- Web of Science
- Google Scholar for other free to access sources

Moreover, to capture practical insights and real-world trends, white papers from consulting firms (McKinsey, Deloitte), industry reports (Gartner, IDC), and ISO standards documents (55000, PAS 55) qualify as grey literature.

C. Keywords and Search Terms

A mixed approach using a controlled vocabulary and free-text keywords was implemented. Some of the more common search terms are as follows.

Volume 2, Issue 2, 2024 https://jecir.com/

- "Asset Management Systems"
- "Integration of IoT in asset management"
- "AI applications in predictive maintenance"
- "Cloud Computing Related To Asset Tracking"
- "Equipment Blockchain Traceability"
- "AMS in Manufacturing/Transport/Utilities/Healthcare"

To refine the results, Boolean operators (AND, OR) and truncation were used. Searches were made for publications for the years 2010 and 2024. Most recent years are emphasized to showcase history in the development of digital technologies.

D. Inclusion and Exclusion Criteria

The following criteria were used:

Inclusion: Peer-reviewed journal articles, conference papers, standards documents, and AMS Technologies applications industry reports containing relevance to AMS technologies, applications, challenges, and future trends.

Exclusion: Non-English articles, documents with no full-text access, and papers focusing on asset management from a financial perspective.

E. Selection and Data Extraction

A preliminary selection based on relevance and quality was made from over 200 documents. After title and abstract screening, 110 documents were chosen for the review. From that, 65 sources were drawn from the final analysis.

The following data was noted:

- AMS Concepts and Modules
- Technological Components (e.g., IoT, AI, Cloud Computing, Blockchain)
- Implementation by Industry
- Advantages and disadvantages
- Performance Metrics
- Described gaps within prior research along with proposed later studies

IV. ANALYSIS AND SYNTHESIS

A qualitative approach focused on thematic analysis aimed to daft individual case studies reviews into broader narratives found within the selected literature. Themes were developed and placed into the pre-allocated sections of the review: historical background, technological drivers, applications across multiple sectors, advantages, challenges, and emerging developments. The analysis was facilitated by concept map and comparative table graphics.

A. Methodological Restrictions

This literature review is constrained by the choice of focus on English texts and potential attention bias to more widely covered technology. Although the inclusion of grey literature provides substantial value, it diminishes the reliability that comes from peer-reviewed sources. Despite these criticisms, the methodology achieves a comprehensive and inclusive understanding of the current state of AMS.

Using the proposed systematic way, this review intends to provide an unbiased and nuanced understanding that integrates academic discourse with professional asset management systems expertise.

B. Key Technologies in AMS

The history of Asset Management Systems (AMS) development correlates with the adoption of new digital technologies such as turning asset tracking into automatic and predictive systems. Some of the most notable are the Internet of Things (IoT), Artificial Intelligence (AI), cloud computing, and blockchain. All of these technologies together provide real-time visibility, predictive maintenance, secured decentralized data, and scalable infrastructure, which increases the AMS's effectiveness and strategic value.

C. Internet of Things (IOT)

Volume 2, Issue 2, 2024 https://jecir.com/

Modern AMS frameworks are built on the IoT base. IoT involves the integration of sensors and smart devices into physical assets that can capture data about actual performance, location, usage, and condition [30]. This data flow in itself is sufficient to create predictive maintenance by observing anomalies prior to failure events, which ultimately lowers downtime, and repair costs. IoT is pivotal in complex systems with high asset turnover in the Manufacturing and Transportation industries.

D. Artificial Intelligence (AI)

The incorporation of AI into AMS systems provides superior analytics and decision-making capabilities, further enriching AMS. With the application of machine learning techniques and neural networks, AI has the ability to identify patterns in asset behavior, predict failures, and optimize maintenance routines [23]. Moreover, AI-driven AMS can support asset lifecycle management and risk mitigation by providing actionable insights through the analysis of historical and current data. This type of predictive capability is critical in asset-heavy industries such as utilities and aviation.

E. Cloud Computing

Cloud solutions provide flexible and economical infrastructure for the deployment of AMS at various locations and organizational units. They allow for the storage of data in a single location, data sharing, and collaboration in real time and integration with other company systems like ERP and SCM [6]. Furthermore, AMS hosted on the cloud enable access from remote locations, which is increasingly important in today's global and remote work settings. Moreover, cloud services supply the necessary processing power required to analyze large amounts of asset data.

F. Block Chain

There remains a gap in AMS applications; nonetheless, blockchain technology inherently offers advantages regarding data accuracy, visibility, and privacy. Blockchain guarantees traceability and auditability by maintaining an unchangeable record of transactions and maintenance histories of assets [42]. This is critical for the healthcare and defense sectors where regulatory compliance and records that cannot be altered are essential. These technologies combined are transforming asset management by increasing trust, lowering costs, and fostering a proactive approach to management. With continued technology evolution and convergence, AMS systems are anticipated to become progressively autonomous and sophisticated, reflecting the principles of Industry 4.0.

G. Challenges and Limitations

Even with high pace development of Asset Management Systems (AMS) technology, there are still some critical factors that hinder the adoption and full use of AMS. Data integration is a primary issue; numerous organizations still operate using standalone outdated systems that do not align with modern AMS frameworks, severely restricting real-time insights and operational efficiencies in timely decision-making. As more AMS adopt IoT and cloud technologies, the systems become more vulnerable to breaches, increasing the threat cybersecurity poses. Financial limitations, especially for small and medium-sized enterprises (SMEs), further stifle the adoption of advanced AMS since the initial expenses relative to the anticipated benefits stretch out over a long period. Coupled with rigid organizational cultures, a deepening lack of skilled professionals in data science, AI, and systems administration aggravates the issue, creating an adapting help-maintain sophisticated AMS infrastructure enduring challenge. Another issue is AMS scalability; expanding enterprises tend to struggle with managing system performance issues from complex assets handling across various regions and categories. Moreover, AMS being devoid of consolidated international guidelines burns interoperability gaps for cross-industry cooperations. Advances in fields like blockchain and AI could alleviate some of these challenges, but their implementation is still in the beginning stages.

In order to unlock the value AMS possesses, stakeholders need to develop secure and flexible systems, enhance workforce training, streamline processes, and cultivate a culture focused on digital innovations and transformations for devices that AMS integrates with these constraints are critical for addressing AMS's strategic value in the modern world.

Volume 2, Issue 2, 2024 https://jecir.com/

V. CONCLUSION

The progression of Asset Management Systems (AMS) illustrates the metamorphosis from archaic techniques like logbooks, to modern technologies that enhance business operational efficiency, risk mitigation, and strategic planning. This review integrated the evolutionary AMS relevant history, technology milestones, cross industry, AMS case studies, and contemporary challenges in AMS adoption. AMS are now experiencing a major technological boost courtesy of the Internet of Things (IoT), Artificial Intelligence (AI), Cloud Computing, and Blockchain fundamental AMS enabling technologies, which enables shifting from conservative, predictive, and partially automated systems to fully integrated and autonomous levels of asset management. The aforementioned technologies allow for real-time, remote access monitoring and analytics, advanced analytic techniques, decentralized record keeping, and data accessibility thereby increasing not just the technical importance but also the strategic value of assets.

On the other hand, AMS broad application in the industry brings about new challenges one. These barriers include persistent data silos, cybersecurity weaknesses, high AMS adoption costs, and lacking qualified personnel. These obstacles, however, are bound to be solved through innovation adopting emerging AMS digital twins, edge computing, and AI technologies argue that these trends will enhance system scalability, transparency, and overall systemic resilience.

The revisions emphasized the lack of AMS realization regarding standardization, interoperability, and collaboration across sectors. More work is needed focusing on longitudinal evaluations, user-guided frameworks, and adaptive teaching methods within AMS. In addition, the people side instruction, change management, and leadership is equally important, also in the context of technology transitions.

At end, AMS stands at the intersection of the digital shift in asset-heavy industries. By overcoming technological silos, enabling seamless integration, realigning systems to meet strategic objectives, and breaking down implementation obstacles, companies can derive significant value and construct intelligent infrastructure intended for the future.

REFERENCES

- [1]. S. O. Abioye et al., "Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges," *J. Build. Eng.*, vol. 44, p. 103299, 2021.
- [2]. M. Z. Afshar, "Exploring factors impacting organizational adaptation capacity of Punjab Agriculture & Meat Company (PAMCO)," *Int. J. Emerg. Issues Soc. Sci. Arts Humanit. (IJEISSAH)*, vol. 2, no. 1, pp. 1–10, 2023.
- [3]. S. Ahmad, W. K. Wong, S. Riaz, and A. Iqbal, "The role of employee motivation and its impact on productivity in modern workplaces while applying human resource management policies," *Arab. J. Bus. Manag. Rev. (Kuwait Chapter)*, vol. 13, no. 2, pp. 7–12, 2024.
- [4]. S. Ahmad, D. M. Zada, and H. Ahmad, "Impact of decision making by charismatic leadership in conflicted and tangled circumstances," *KASBIT Bus. J.*, vol. 17, no. 1, 2024.
- [5]. J. E. Amadi-Echendu et al., What is engineering asset management? Springer London, 2010, pp. 3–16.
- [6]. N. Ashry, H. Nashaat, and R. Rizk, "AMS: Adaptive migration scheme in cloud computing," in *Proc. Int. Conf. Adv. Intell. Syst. Inform.*, 2019, pp. 357–369.
- [7]. R. Assaad and I. H. El-Adaway, "Bridge infrastructure asset management system: Comparative computational machine learning approach for evaluating and predicting deck deterioration conditions," *J. Infrastruct. Syst.*, vol. 26, no. 3, p. 04020032, 2020.
- [8]. A. Badnjevic, "Evidence-based maintenance of medical devices: Current shortage and pathway towards solution," *Technol. Health Care*, vol. 31, no. 1, pp. 293–305, 2023.
- [9]. S. Bhanji et al., "Advanced enterprise asset management systems: Improve predictive maintenance and asset performance by leveraging Industry 4.0 and the Internet of Things (IoT)," in *ASME/IEEE Joint Rail Conf.*, 2021, p. V001T12A002.

Volume 2, Issue 2, 2024 https://jecir.com/

- [10]. J. Bourke and S. Roper, "AMT adoption and innovation: An investigation of dynamic and complementary effects," *Technovation*, vol. 55, pp. 42–55, 2016.
- [11]. F. Casino, T. K. Dasaklis, and C. Patsakis, "A systematic literature review of blockchain-based applications: Current status, classification and open issues," *Telemat. Inform.*, vol. 36, pp. 55–81, 2019.
- [12]. L. Chen and Q. Bai, "Optimization in decision making in infrastructure asset management: A review," *Appl. Sci.*, vol. 9, no. 7, p. 1380, 2019.
- [13]. A. Cogato et al., "Challenges and tendencies of automatic milking systems (AMS): A 20-years systematic review of literature and patents," *Animals*, vol. 11, no. 2, p. 356, 2021.
- [14]. A. Deshpande et al., *Distributed Ledger Technologies/Blockchain: Challenges, opportunities and the prospects for standards*, BSI, 2017, pp. 1–34.
- [15]. M. Farahpoor, O. Esparza, and M. Soriano, "Comprehensive IoT-driven fleet management system for industrial vehicles," *IEEE Access*, 2023.
- [16]. G. Fuertes et al., "Opportunities of the technological trends linked to Industry 4.0 for achieve sustainable manufacturing objectives," *Sustainability*, vol. 14, no. 18, p. 11118, 2022.
- [17]. E. Gavrikova, I. Volkova, and Y. Burda, "Implementing asset data management in power companies," *Int. J. Qual. Reliab. Manag.*, vol. 39, no. 2, pp. 588–611, 2022.
- [18]. S. Gupta and A. K. Sharma, "Evolution of infrastructure as an asset class: A systematic literature review and thematic analysis," *J. Asset Manag.*, vol. 23, no. 3, p. 173, 2022.
- [19]. M. R. Halfawy, "Integration of municipal infrastructure asset management processes: Challenges and solutions," *J. Comput. Civ. Eng.*, vol. 22, no. 3, pp. 216–229, 2008.
- [20]. M. R. Haque et al., "The role of macroeconomic discourse in shaping inflation views: Measuring public trust in Federal Reserve policies," *J. Bus. Insight Innov.*, vol. 2, no. 2, pp. 88–106, 2023.
- [21]. R. K. Hashmani et al., "New monitoring interface for the AMS experiment," *Nucl. Instrum. Methods Phys. Res. A*, vol. 1046, p. 167704, 2023.
- [22]. N. A. Hastings, *Physical Asset Management*, vol. 2. London: Springer, 2010, pp. 209–221.
- [23]. Y. Himeur et al., "AI-big data analytics for building automation and management systems: A survey, actual challenges and future perspectives," *Artif. Intell. Rev.*, vol. 56, no. 6, pp. 4929–5021, 2023.
- [24]. A. W. Ijigu, A. E. Alemu, and A. M. Kuhil, "The mediating role of employee ambidexterity in the relationship between high-performance work system and employee work performance: An empirical evidence from Ethio-telecom," *Cogent Bus. Manag.*, vol. 9, no. 1, p. 2135220, 2022.
- [25]. A. K. Jardine, D. Lin, and D. Banjevic, "A review on machinery diagnostics and prognostics implementing condition-based maintenance," *Mech. Syst. Signal Process.*, vol. 20, no. 7, pp. 1483–1510, 2006.
- [26]. K. Keong Choong, "Understanding the features of performance measurement system: A literature review," *Meas. Bus. Excell.*, vol. 17, no. 4, pp. 102–121, 2013.
- [27]. B. Kitchenham and S. Charters, "Guidelines for performing systematic literature reviews in software engineering version 2.3," *Eng.*, vol. 45, no. 4ve, p. 1051, 2007.
- [28]. K. Kuru and H. Yetgin, "Transformation to advanced mechatronics systems within new industrial revolution: A novel framework in automation of everything (AoE)," *IEEE Access*, vol. 7, pp. 41395–41415, 2019.
- [29]. J. G. Langeveld et al., "Asset management for blue-green infrastructures: A scoping review," *Blue-Green Syst.*, vol. 4, no. 2, pp. 272–290, 2022.
- [30]. J. Lee, B. Bagheri, and H. A. Kao, "A cyber-physical systems architecture for industry 4.0-based manufacturing systems," *Manuf. Lett.*, vol. 3, pp. 18–23, 2015.
- [31]. K. Lim, C. S. Chang, and G. J. Hui, "Leveraging information technology for effective inventory management in Singapore's supply chain industry," *Int. Bus. Logist.*, vol. 3, no. 2, 2023.
- [32]. D. Maletic, M. Grabowska, and M. Maletic, "Drivers and barriers of digital transformation in asset management," *Manag. Prod. Eng. Rev.*, pp. 118–126, 2023.

Volume 2, Issue 2, 2024 https://jecir.com/

- [33]. R. K. Mobley, An Introduction to Predictive Maintenance. Elsevier, 2002.
- [34]. K. Munn et al., "Asset management competency requirements in Australian local government: A systematic literature review," *Australas. J. Eng. Educ.*, vol. 26, no. 2, pp. 167–200, 2021.
- [35]. W. Nash, T. Drummond, and N. Birbilis, "A review of deep learning in the study of materials degradation," *npj Mater. Degrad.*, vol. 2, no. 1, p. 37, 2018.
- [36]. V. K. Ponnusamy et al., "A comprehensive review on sustainable aspects of big data analytics for the smart grid," *Sustainability*, vol. 13, no. 23, p. 13322, 2021.
- [37]. N. D. Popović, D. S. Popović, and I. Seskar, "A novel cloud-based advanced distribution management system solution," *IEEE Trans. Ind. Inform.*, vol. 14, no. 8, pp. 3469–3476, 2017.
- [38]. D. Shin, "The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI," *Int. J. Hum.-Comput. Stud.*, vol. 146, p. 102551, 2021.
- [39]. U. A. Usmani, A. Happonen, and J. Watada, "Advancements in industry 4.0 asset management: Interoperability and cyber security challenges and opportunities," in *Proc. Future Technol. Conf.*, 2023, pp. 468–488.
- [40]. N. T. Viet and A. G. Kravets, "The new method for analyzing technology trends of smart energy asset performance management," *Energies*, vol. 15, no. 18, p. 6613, 2022.
- [41]. M. A. Yar and M. K. Mumtaz, Asset Management System Design for Electric Utilities in Developing Economies; A Case of Pakistan, 2023.
- [42]. Y. Zhu et al., "Blockchain-enabled access management system for edge computing," *Electronics*, vol. 10, no. 9, p. 1000, 2021.

